If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-90n=0
a = 2; b = -90; c = 0;
Δ = b2-4ac
Δ = -902-4·2·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-90}{2*2}=\frac{0}{4} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+90}{2*2}=\frac{180}{4} =45 $
| (1/6)^x=279.936 | | (9+2x)/4=3x+2 | | (3)^x=177.147 | | 233=173-w | | 3a+45=4a+22 | | -x+146=219 | | 20-17x2=-14 | | x-0.15x=12750 | | 750-50h=200 | | 39+6m=123 | | 39+6m=99 | | 20-2h=8 | | 100+10w=450 | | 120=10(2)+b | | 5(x-3)+2=3(x-1)-4x | | 14+8s=134 | | 1/2(x+3)=1/4(4x-2) | | 30=8(2)+b | | 12=2(-2)+b | | 5(x-3)+2=3(x-1)4x | | x^2+0.01x-0.01=0 | | 6+4h=50 | | 60-4d=44 | | 4=1-2x | | 15(e+4)=12e | | 560.000-40.000x=200000 | | m/5+13=22 | | 1+7m=5m+1 | | 25000+1000m=2000 | | s/7+14=5 | | 4-(7x+1)=x+5 | | q/2+18=25 |